Tentamen Structuur der Materie

March 31, 2014

Opgave 1

a) $l=0,1,2, n-1 \rightarrow l=0,1,2,3,4$
b) see p. $77, \cos \theta=\frac{m_{l}}{\sqrt{l(l+1)}}$
c) Use $n=l+\nu+1$, such that we have $\nu=4$ and 1 (number of nodes) for the 5 s and 5 f states, respectively. Draw this with the correct zero crossings, always starting positive, the maximum is always far away from the nucleus ($\mathrm{r}=0$) and it goes to zero exponentially. See p. 80
d) $E_{n}=\frac{-13.6 \mathrm{eV}}{n^{2}} \mathrm{p} .77$
e) States with higher angular momentum are affected most by the repulsive centrifugal force, pushed further from the nucleus and are less tightly bound.

Opgave 2

a) Strong, weak and electromagnetic interaction
b) gluon, W / Z bosons and photon, respectively
c) $<10^{-22} \mathrm{~s}, 10^{-14}-10^{-20} \mathrm{~s}, 10^{-8}-10^{-13}$ s respectively.
d) $\mathrm{Q}=-1$
e) $\mathrm{Y}=-1($ see p .357$)$
f) $I_{3}=-1 / 2$
g) Baryon number conserved. Lepton number conserved. $\Delta S=1$, so not allowed
h) Strangeness changing is allowed by the weak interaction.

Opgave 3

a) 22 electrons: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{2}$
b) $3 d^{2}$, so two equivalent electrons with $s 1=s 2=1 / 2$ and $l 1=l 2=2$, this couples to $S=0,1$ and $L=0,1,2,3,4$. Equivalent electrons so $L+S=$ even. ${ }^{1} S_{0},{ }^{3} P_{0,1,2},{ }^{1} D_{2},{ }^{3} F_{2,3,4},{ }^{1} G_{4}$
c) ${ }^{3} F_{2}$
d) $R=1.12 A^{1 / 3} \mathrm{fm}$, so $\mathrm{A}=47$, gives $\mathrm{R}=4 \mathrm{fm}$
e) $\frac{22 e}{4 / 3 \pi R^{3}}=0.08 e / \mathrm{fm}^{3}$
f) see p.410: 22 protonen, $1 s_{1 / 2} 1 p_{3 / 2} 1 p_{1 / 2} 1 d_{5 / 2} 2 s_{1 / 2} 1 d_{3 / 2} 1 f_{7 / 2}$ 25 neutrons: $1 s_{1 / 2} 1 p_{3 / 2} 1 p_{1 / 2} 1 d_{5 / 2} 2 s_{1 / 2} 1 d_{3 / 2} 1 f_{7 / 2}$
g) $J=7 / 2$ from previous question, $P=(-1)^{L}$ with $\mathrm{L}=3$

Opgave 4

a) $2 S+1=3$, so $S=1$ and $L=1, J=|L-S|, \ldots,|L+S|=0,1,2$
b) see figure 4.18. Use formula for $E_{S O}$, to find that the energy is $-2 B_{S O},-B_{S O}, B_{S O}$ for $J=0,1,2$ respectively. So the ${ }^{3} P$ term is in between the $J=2$ and $J=1$ energies.
c) For this we need the multiplicity $(2 \mathrm{~J}+1)$ of the terms, such that we get $5 \times B+3 \times-B+1 \times-2 B=0$, so there is indeed no shift and the total binding energy is equal to the energy of the ${ }^{3} P$ term.
d) In this case the ground level is the $J=2$ level, because B is negative. Using Hund's rules we know that the highest J level is the ground state if the shell is more than half filled. So this is term belongs to O .
e) We now get the $m_{J}=-J, . ., J$ values, which split linearly in a magnetic field with the highest m_{J} above. See p.101.
f) The weak field approximation breaks down if two levels cross. This would happen first with the $\mathrm{J}=2$ and $m_{J}=2$ and the $\mathrm{J}=1 m_{J}=-1$ levels. For the running (steepness of the slope) we have to calculate the g_{J}

values. Both have $g_{J}=3 / 2$. in the weak field the energy goes like (see p.101) $E=g_{j} \mu_{B} B m_{J}$. We now need to solve $-2 \mathrm{~cm}^{-1}+3 / 2 \mu_{B} B 1=$ $2 \mathrm{~cm}^{-1}-3 / 2 \mu_{B} B 2$, which gives $B=1.9 T$. See also the plot below, where the red curve is the $m_{J}=2$ of the $\mathrm{J}=2$ and the blue is the $m_{J}=-1$ of the $J=1$.

